Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Purinergic Signal ; 18(1): 115-121, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961895

RESUMO

CD73-derived adenosine plays a major role in damage-induced tissue responses by inhibiting inflammation. Damage-associated stimuli, such as hypoxia and mechanical stress, induce the cellular release of ATP and NAD+ and upregulate the expression of the nucleotide-degrading purinergic ectoenzyme cascade, including adenosine-generating CD73. Extracellular NAD+ also serves as substrate for mono-ADP-ribosylation of cell surface proteins, which in human cells is mediated by ecto-ADP-ribosyltransferase 1 (ARTC1). Here we explored, whether human CD73 enzymatic activity is regulated by mono-ADP-ribosylation, using recombinant human CD73 in the presence of ARTC1 with etheno-labelled NAD+ as substrate. Multi-colour immunoblotting with an anti-etheno-adenosine antibody showed ARTC1-mediated transfer of ADP-ribose together with the etheno label to CD73. HPLC analysis of the enzymatic activity of in vitro-ribosylated CD73 revealed strong inhibition of adenosine generation in comparison to non-ribosylated CD73. Mass spectrometry of in vitro-ribosylated CD73 identified six ribosylation sites. 3D model analysis indicated that three of them (R328, R354, R545) can interfere with CD73 enzymatic activity. Our study identifies human CD73 as target for ARTC1-mediated mono-ADP-ribosylation, which can profoundly modulate its adenosine-generating activity. Thus, in settings with enhanced release of NAD+ as substrate for ARTC1, assessment of CD73 protein expression in human tissues may not be predictive of adenosine formation resulting in anti-inflammatory activity.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina , ADP-Ribosilação , Adenosina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Proteínas de Membrana , NAD
2.
Eur J Protistol ; 73: 125665, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31978633

RESUMO

Cafeteria is one of the most common and ecologically significant genera of heterotrophic nanoflagellates in marine plankton. We could isolate and cultivate 29 strains morphologically similar to Cafeteria obtained from surface waters and the deep sea all over the world's ocean. Morphological characterization obtained by high resolution microscopy revealed only small differences between the strains. Sequencing the type material of the type species C. roenbergensis (CCAP 1900/1) and molecular analyses (18S rDNA, 28S rDNA) of newly isolated strains resulted in a revision and separation of the Cafeteriaceae into two known species (C. roenbergensis, C. mylnikovii) and six new species (C. maldiviensis, C. biegae, C. loberiensis, C. chilensis, C. graefeae, C. burkhardae). Many deposited Cafeteria sequences at GenBank and most of our own sequences clustered within one clade (C. burkhardae) with a p-distance of 5% to strain CCAP 1900/1. Only C. maldiviensis clustered together with the type species C. roenbergensis. While C. burkhardae seems to have a cosmopolitan distribution, the distribution of the other species seems to be more restricted. A strain from the Angola Basin had a p-distance of 10% to Cafeteria species and clustered separately within the Anoecales requiring the erection of a new genus, Bilabrum gen. nov., with B. latius sp. nov. as type species.


Assuntos
Filogenia , Estramenópilas/classificação , Oceanos e Mares , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Água do Mar/parasitologia , Estramenópilas/citologia , Estramenópilas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...